Exercise$\# 2$	Algorithms and Data Structures	
	Topic: Recursion	Version: 1.0 / 2019
	Prepared by: dr inż. Grzegorz Łukawski \& dr inż. Barbara Łukawska	

1) Recursion

1.1) The definition

Recursive object - an object, partially consisting of itself, or which definition refers to itself. The recursion allows for defining an infinite set of objects using a finite expression.

Characteristics of recursive algorithms:

- the ending is clearly defined;
- main problem is divided into elementary problems, which solutions are known.

1.2) Example

Computing a factorial of " n " using recursion:

$$
0!=1 ; \text { if } n>0 \text { then } n!=n *(n-1)!
$$

Implementation in C++:

```
#include <iostream>
using namespace std;
int factorial(int n) {
    if (n == 0) return 1;
    else { return(n*factorial(n - 1)); }
}
int main() {
    int num;
    cin >> num;
    cout << factorial(num) << endl;
    return 0;
}
```


1.3) Recursion in Flowgorithm

For building a recursive algorithm, a function must be defined. To create a new function, use the menu option "Program -> Add Function" or use the corresponding icon on the toolbar (see below). Arguments and the returned value of a function should also be defined.

You can switch between the "Main" function and any other one using the choice button on the toolbar. To call a function, use its name and pass arguments in "Assign" box, similarly as in C (see example below).

1.4) Computing factorial in Flowgorithm

The recursive version of computing a factorial in Flowgorithm is presented below:

2) Exercises

Exercises may be implemented in $\mathrm{C} / \mathrm{C}++$ or Flowgorithm. Two solutions should be implemented for each exercise: iterative and recursive version. These versions should be compared (e.g. using debugger or by displaying variable values in the console).
A) Compute the result of $\boldsymbol{a}^{\boldsymbol{n}}$ (a power n)
B) Check whether a word (entered as "string" or "char[]") is a palindrome
C) Find n-th value of the Fibonacci sequence
D) Compute n-th value of the geometric sequence, for given a_{0} (first value) and q (multiplier)

